skip to main content


Search for: All records

Creators/Authors contains: "Liu, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The scaling of the relativistic reconnection outflow speed is studied in the presence of both shear flows parallel to the reconnecting magnetic fields and guide fields pointing out of the reconnection plane. In nonrelativistic reconnection, super-Alfvénic shear flows have been found to suppress reconnection. We extend the analytical model of this phenomenon to the relativistic regime and find similar behavior, which is confirmed by particle-in-cell simulations. Unlike the nonrelativistic limit, the addition of a guide field lowers the in-plane Alfvén velocity, contributing to slower outflow jets and the more efficient suppression of reconnection in strongly magnetized plasmas.

     
    more » « less
  2. Free, publicly-accessible full text available January 1, 2025
  3. Liquid–liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro using recombinant proteins or in cells that overexpress protein, the physiological relevance of LLPS for endogenous protein is often unclear. PERIOD, the intrinsically disordered domain-rich proteins, are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Circadian clock studies often rely on experiments that overexpress clock proteins. Here, we show that when Per2 transgene was stably expressed in cells, PER2 protein formed nuclear phosphorylation-dependent slow-moving LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing nuclear microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by protein overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins are a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian clock studies.

     
    more » « less
    Free, publicly-accessible full text available December 26, 2024
  4. Free, publicly-accessible full text available September 10, 2024
  5. Abstract

    One of the recently observed effects of plasma in medical applications is the physical effect, suggesting that the electromagnetic (EM) emission of cold atmospheric plasmas can lead to cell membrane oscillations and sensitization to the chemical active ingredient of treatments such as cancer drugs. This is a new aspect that must be considered along with the plasma chemical effects for the future dose definition which is the most urgent research topic of plasma medicine. However, unlike the reactive oxygen and nitrogen species generated from plasma chemistry which is well-known as playing a key role in apoptosis cancer cells, the EM emission power spectrum and emission mechanism are still unquantified. This makes the uncertainty of the physical dosage of the therapy and thus impedes the further understanding and optimization of the plasma therapy. In this paper, we compute the 3D spatial distribution of the power density spectrum of EM emission from a cold atmospheric helium plasma jet. The simulations indicate that the plasma oscillations following the plasma streamer propagation are the main source of EM emission, while the emissions of the bulk current caused by net charge movements and the bremsstrahlung due to charge collisions are negligible. The results are also verified by a microwave power measurement using a heterodyne frequency sweep. These findings will thus fill out the last missing piece of the jigsaw before the plasma medicine community can define the dose in the future.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  6. Free, publicly-accessible full text available August 1, 2024
  7. Large-scale distributed storage systems, such as object stores, usually apply hashing-based placement and lookup methods to achieve scalability and resource efficiency. However, when object locations are determined by hash values, placement becomes inflexible, failing to optimize or satisfy application requirements such as load balance, failure tolerance, parallelism, and network/system performance. This work presents a novel solution to achieve the best of two worlds: flexibility while maintaining cost-effectiveness and scalability. The proposed method Smash is an object placement and lookup method that achieves full placement flexibility, balanced load, low resource cost, and short latency. Smash utilizes a recent space-efficient data structure and applies it to object-location lookups. We implement Smash as a prototype system and evaluate it in a public cloud. The analysis and experimental results show that Smash achieves full placement flexibility, fast storage operations, fast recovery from node dynamics, and lower DRAM cost (<60%) compared to existing hash-based solutions such as Ceph and MapX. 
    more » « less
    Free, publicly-accessible full text available May 19, 2024
  8. Abstract

    Intracellular pH dynamics is increasingly recognized to regulate myriad cell behaviors. We report a finding that intracellular pH dynamics also regulates adult stem cell lineage specification. We identify an intracellular pH gradient in mouse small intestinal crypts, lowest in crypt stem cells and increasing along the crypt column. Disrupting this gradient by inhibiting H+efflux by Na+/H+exchanger 1 abolishes crypt budding and blocks differentiation of Paneth cells, which are rescued with exogenous WNT. Using single-cell RNA sequencing and lineage tracing we demonstrate that intracellular pH dynamics acts downstream of ATOH1, with increased pH promoting differentiation toward the secretory lineage. Our findings indicate that an increase in pH is required for the lineage specification that contributes to crypt maintenance, establishing a role for intracellular pH dynamics in cell fate decisions within an adult stem cell lineage.

     
    more » « less
  9. Free, publicly-accessible full text available June 12, 2024